

### ST. LOUIS RIVER ESTUARY

Area of Concern to Area of Recovery A Framework for Delisting Nelson T. French

2012 Upper Midwest Stream Restoration Symposium March 6, 2012 Minneapolis, MN

## St. Louis River Estuary Area of Concern to Area of Recovery A Framework for Delisting



20 years

of tewardship



# Overview of SLRAOC

- Past history a legacy of settlement and development
- Regulated History 1972 1989
- Recent History 1989 2010
- GLRI 2011 2012
- Future Opportunity 2012 2025...



ST. LOUIS RIVER ESTUARY Area of Concern to Area of Recovery A Framework for Delisting



# A budding metropolis in 1883...













# By 1890 a bustling inland port...



# 1896 – the bridge is in!



## The Twin Ports



### St. Louis River AOC circa Present





## US Steel Superfund Site



![](_page_14_Picture_0.jpeg)

![](_page_15_Picture_0.jpeg)

### Western Lake Superior Sanitary District Came on Line in 1979

![](_page_16_Picture_1.jpeg)

### Canada-U.S. Great Lakes Water Quality Agreement

![](_page_17_Picture_1.jpeg)

Purpose is to restore and maintain the chemical, physical, and biological integrity of the waters of the Great Lakes Basin Ecosystem

Richard Nixon and Pierre Trudeau sign the historic agreement.

- Signed 1972: focus on nutrients; phosphorus in Lake Erie
- Revised 1978: more focus on toxics
- Revised 1987: introduced Lakewide Management Plans and Areas of Concern
- Renegotiate 2011: currently being renegotiated

![](_page_17_Picture_8.jpeg)

![](_page_18_Figure_0.jpeg)

- 26 located entirely within the United States (1 delisted)
- 12 located wholly within Canada (3 delisted)
- 5 that are shared by Canada and United States

### St. Louis River Area of Concern

- The St. Louis River Area of Concern was designated in 1989 and is 1,016.75 square miles in size.
- Minnesota & Wisconsin
- Cloquet, Duluth and Superior
- Fond du Lac Reservation

![](_page_19_Picture_5.jpeg)

![](_page_19_Figure_6.jpeg)

## How Big is the SLR AOC?

#### The SLRAOC = 1016.75 SqMi.

![](_page_20_Picture_2.jpeg)

#### Can hold within its area:

|                         | EIGHTEENMILE CREEK<br>AREA OF CONCERN |             | DEER LAKE AREA OF<br>CONCERN           |  |  |  |  |
|-------------------------|---------------------------------------|-------------|----------------------------------------|--|--|--|--|
|                         | MANISTIQUE AREA OF<br>CONCERN         |             | KALAMAZOO RIVER<br>AREA OF CONCERN     |  |  |  |  |
|                         | WAUKEGAN HARBOR                       |             | MUSKEGON LAKE                          |  |  |  |  |
|                         | SHEBOYGAN AREA OF                     |             | AREA OF CONCERN                        |  |  |  |  |
|                         | CONCERN                               |             | MILWAUKEE AREA OF                      |  |  |  |  |
|                         | OSWEGO RIVER AREA                     |             | ST I AWRENCE RIVER                     |  |  |  |  |
|                         | BUFFALORIVER AREA                     |             | MASSENA AREA OF                        |  |  |  |  |
|                         | OF CONCERN                            |             | CONCERN                                |  |  |  |  |
|                         | MENOMINEE AREA OF<br>CONCERN          |             | GRAND CALUMET<br>RIVER                 |  |  |  |  |
|                         | RIVER RAISIN AREA OF<br>CONCERN       |             | FOX RIVER/GREEN BAY<br>AREA OF CONCERN |  |  |  |  |
|                         | ASHTABULA RIVER<br>AREA OF CONCERN    |             | ROCHESTER<br>EMBAYMENT AREA OF         |  |  |  |  |
|                         | WHITE LAKE AREA OF                    |             | CUNCERN<br>CT. CLAID ADEA OF           |  |  |  |  |
|                         | CONCERN                               |             | SI. CLAIK AKEA OF                      |  |  |  |  |
|                         | TORCH LAKE AREA OF                    |             | ROUGERIVER AREA OF                     |  |  |  |  |
|                         | CONCERN                               | _           | CONCERN                                |  |  |  |  |
|                         |                                       |             |                                        |  |  |  |  |
| 21  AOC's or 652 8 SaMi |                                       |             |                                        |  |  |  |  |
|                         |                                       | <b>50</b> 2 |                                        |  |  |  |  |

Source; EPA GLNPO Mark Elster, 2008

![](_page_21_Figure_0.jpeg)

## Partnerships

- St. Louis River Alliance
- Minnesota Department of Natural Resources
- Wisconsin Department of Natural Resources
- Fond du Lac Resource Management
- Minnesota Pollution Control Agency
- Minnesota Land Trust
- United States Fish and Wildlife Service
- Minnesota Sea Grant
- Natural Resources Research Institute
- U. S. Environmental Protection Agency
- Western Lake Superior Sanitary District
- West Wisconsin Land Trust
- The Nature Conservancy
- Harbor Technical Advisory Committee
- Port Authority
- NOAA

- St. Louis, Carlton and Douglas Counties
- Cities of Duluth and Superior
- Murphy Oil, Minnesota Power, Sappi Fine Paper, Hallet Dock, Potlatch Corporation
- University of Minnesota Duluth
- University of Wisconsin Superior
- United States Coast Guard

![](_page_22_Picture_23.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_24_Figure_0.jpeg)

In 2011, four young sturgeon we collected in an area below the du Lac dam by tribal biologists the first evidence of sturgeon reproduction in the river in man decades.

## *"Working with Minnesotans to protect, conserve and improve our environment and enhance our quality of life"*

**MPCA** Mission Statement

Photo by Doug Robertson

#### Clean Water Act - 1972

#### Causes of Impairment – 303d

- Pathogens
- Mercury
- Metals
- Nutrients
- Sediment
- Organic Enrichment/Oxygen Depletion
- pH/Acidity/Caustic Condition
- PCB's
- Impaired biota
- Turbidity
- Temperature
- Pesticides
- Salinity/T Dissolved
   Solids/Chlorides/Sulfates
- Unknown Cause
- Noxious Aquatic Plants

#### Great Lakes Water Quality Agreement – Annex II 1987

#### AOC 14 Beneficial Use Impairments

- Restrictions on fish and wildlife consumption
- Fish tumors or other deformities
- Degradation of benthos
- Restrictions on dredging activities
- ✓ Beach closings
- Degradation of aesthetics
- Loss of fish and wildlife habitat
- Degradation of fish wildlife populations
- Excessive Loading of Sediment and Nutrients
- Tainting of fish and wildlife flavor
- Bird or animal deformities or reproduction problems
- Restrictions on drinking water consumption, or taste and odor problems
- Degradation of phytoplankton and zooplankton populations
- Added costs to agriculture or industry

## BUI 1: Fish Consumption Advisories

Beneficial Use Target: There are no Area of Concern-specific fish consumption advisories issued for the St. Louis River by the State of Wisconsin or the State of Minnesota. Tissue concentrations of contaminants of concern in representative samples of resident fish are not significantly elevated from regional background samples.

# BUI 2: Degraded Fish & Wildlife Populations

Beneficial Use Target: In consultation with their federal, tribal, local and nonprofit partners, state resource management agencies concur that diverse native fish and wildlife populations are not limited by physical habitat, food sources, water quality, or contaminated sediments.

## BUI 3: Fish Tumors and Deformities

**Beneficial Use Target:** Incidence rates of contaminant-related internal and external tumors and deformities in resident benthic fish species, including neoplastic or pre-neoplastic liver tumors, do not exceed incident rates from unimpaired areas elsewhere in the Great Lakes basin.

## BUI 4: Degradation of Benthos

**Beneficial Use Target:** The benthic community in historically degraded areas (ie, chemically, biologically, or physically degraded areas) of the AOC does not significantly differ from unimpacted sites of comparable characteristics within the AOC. **Benthic community characteristics** including native species richness, diversity, abundance, and functional groups will be considered when comparing sites.

## BUI 5: Restrictions on Dredging

Beneficial Use Target: All contaminated sediment hotspots within the AOC have been identified and implementation actions to remediate contaminated sites have been completed. There are no special handling requirements of material from routine navigational dredging due to contamination originating from controllable sources within the AOC.

## BUI 6: Excessive Loading of Nutrients and Sediments

- Beneficial Use Target: Nutrient and sediment levels have not been shown to impair water quality and habitat, and do not restrict recreation, including fishing, boating, or body contact in the estuary and within western Lake Superior based on the following criteria;
  - discharge permits are in compliance
  - total phosphorus limits
  - no exceedances of water quality standards attributable to wastewater overflows

## BUI 7: Beach Closings & Body Contact

Beneficial Use Target: Sources of stormwater and wastewater discharges to the St. Louis River AOC have been identified and measures to reduce the risk of human exposures to disease causing microorganisms have been implemented. There are no body contact advisories due to the presence of harmful chemicals at contaminated sites. No water bodies within the AOC are included on the 303(d) lists due to controllable sources.

### BUI 8: Degradation of Aesthetics

Beneficial Use Targets: There are no verified persistent occurrences of objectionable properties in the surface waters of the St. Louis River Estuary during the previous five year period. "Persistent occurrences" are defined as objectionable properties that occur more than two times per year and are greater than ten days in duration.

## BUI 9: Loss of Fish & Wildlife Habitat

Beneficial Use Target: State resource management agencies concur, in consultation with their federal, tribal, local, and nonprofit partners, that a reasonable amount of fish and wildlife habitat, given the presence of industrial development in the estuary, that is currently degraded is enhanced, rehabilitated, and protected against further loss of habitat.

(includes interim guides for contamination, AIS, restoration of habitat)

#### St. Louis River Area of Concern Sediment Characterization Sites

![](_page_37_Figure_1.jpeg)

![](_page_37_Picture_2.jpeg)

Minnesota Pollution Control Agency Size: 5,810 acres Contaminated Sediment Estimated Volume: 17,526,825 cu. yd. Estimated Cost: \$1.75 - \$17.5 B

Prepared by: Kody Thurnau; Remediation Division; 2008 Aerial Photo Courtesy of LMIC; Date Completed: 6/2009

### Sediment Characterization

St. Louis River Area of Concern

78% of area sediments sampled. Data currently being reviewed and validated. Underlying sediment conditions will inform R2R.

Wisconsin

Minnesota (~6692 acres)

Wisconsin (~2635 acres)

Additional sediment assessment will likely be required for each individual site remediation to restoration project

![](_page_38_Picture_7.jpeg)

Minnesota Pollution Control Agency

Created by: Brittany Story, MPCA; 2008 Aerial Photo Courtesy of LMIC; Completed: 8/2011

Minnesota

# Implementation Framework Key Goals

Develop a comprehensive, stakeholder vetted plan for recovery and delisting AOC > Identify, prioritize, and define high priority Remediation to Restoration (R2R) projects  $\rightarrow$  Be ready for action Track progress – Measurable Indicators > Enable local partners to advance strategically aligned projects

![](_page_39_Picture_2.jpeg)

![](_page_40_Figure_0.jpeg)

![](_page_40_Picture_1.jpeg)

## Holistic Approach to Prioritized Actions

**Beneficial Use Impairments** 

#### Stressors/Sources

![](_page_41_Figure_2.jpeg)

# Major Implementation Framework Project Elements

- > BUI Blueprints
  - > Historic Conditions
  - Current Conditions
  - Path to Delisting

![](_page_42_Picture_5.jpeg)

- Set of Measureable Indicators
- Prioritized Actions and R2R plans
- Roadmap to Recovery and Ultimate Delisting

![](_page_42_Picture_9.jpeg)

![](_page_42_Picture_10.jpeg)

# Data Projects and Status

| Database                   | <ul> <li>Sharing data with NOAA through QM</li> <li>Most or our previous efforts have been scattered</li> <li>Building a St. Louis Bay MN/WI Database</li> <li>Weekly lead conference and a new technical team being</li> </ul>     |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New Data/Recent<br>Studies | <ul> <li>Superior Bay/21<sup>st</sup>Ave</li> <li>St. Louis Bay/40th Ave</li> <li>Lower St. Louis River</li> <li>Upper St. Louis River</li> </ul>                                                                                   |
| GIS/Data Analysis          | <ul> <li>Environment Canada's (SeQI) sediment Quality</li> <li>Used to calculate Tier 1 and Tier 2 @ 6inch and 1M depths base on</li> <li>ND Substitution analysis</li> <li>New MN/WI Level 1 and Level 2 polygon effort</li> </ul> |
| Future/Current<br>Projects | <ul> <li>TMDL Studies</li> <li>Amity Creek, Miller Creek</li> <li>Hg &amp; Toxics TMDL studies,</li> <li>PAH in coal tar sealants</li> </ul>                                                                                        |

![](_page_44_Figure_0.jpeg)

# Polygon and Mapping Work

![](_page_45_Figure_1.jpeg)

![](_page_45_Figure_2.jpeg)

# Bathymetry - AOC Wide

![](_page_46_Figure_1.jpeg)

![](_page_46_Figure_2.jpeg)

# SeQI Analysis

| Home Insert Page Layout Form<br>& Cut<br>Paste Format Painter<br>Chipboard Form<br>A8 • 5-<br>Home Data Rein<br>Load Canadian Sediment Quality Guid<br>(CCME, 2002) References Ereshwater                                                                                                                                                                                                                                                                | vulas Data Review                                                                                                                                                                                                                                                                                                                                                                                                                            | Cetting Started                                                                                                                              | The SeQI<br>uideline List                                                                                                                                         | Image: Constraint of the second of the se |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables         1         1.2-BENZPHENANTHRACENE         2.2-Methylmaphthalene         3.Acenaphthene         4.Acenaphthylene         5.Anthracene         6.Arsenic         7.Benzo(a)anthracene         8.Benzo(a)anthracene         9.Cadmium         10.Chromium         11.Copper         12.Dibenz(a,h)anthracene         13.Fluoranthene         14.Fluorene         15.Lead         16.Mercury         17.PAHs - Naphthalene         8.Nickel | Symbol         Units           μγ/×γ         μγ/×γ           μγ/×γ         μγ/×γ           μγ/×γ         μγ/×γ           μγ/×γ         μγ/×γ           Δs         μγ/×γ           μγ/×γ         μγ/×γ           Cd         μγ/×γ           Cr         μγ/×γ           μγ/×γ         μγ/×γ           μγ/×γ         μγ/×γ           μγ/×γ         μγ/×γ           μγ/×γ         μγ/×γ           μγ/×γ         μγ/×γ           Ni         μγ/×γ | Level 1 SQT<br>Value<br>170<br>20<br>6.7<br>5.9<br>57<br>9.8<br>110<br>150<br>0.99<br>43<br>32<br>33<br>420<br>77<br>36<br>0.18<br>180<br>23 | Level II SQT<br>Value<br>1300<br>200<br>89<br>130<br>850<br>33<br>1100<br>1500<br>5<br>110<br>150<br>140<br>2200<br>540<br>130<br>140<br>2200<br>540<br>130<br>49 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PAHs     Pyrene       20     PAHs       21     Total PAHs 17       22     Polychlorinated biphenyls (total)       23     Zinc       24     25       25     26       26     27       28     29       30     31       31     32       33     34       35     36       36     37                                                                                                                                                                            | и р/жу                                                                                                                                                                                                                                                                                                                                                                                                                                       | 200<br>200<br>1600<br>60<br>120                                                                                                              | 1500<br>1200<br>23000<br>660<br>460                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

#### **0-6 Inches Cores** SeQI Analysis SeQI Level 1 SQT Figure 2-e 21st Avenue (Surface Layer) - Lead Level 2 SQT St. Louis Bay Area's Concentration (mg/kg dry wt) 0-36 Inches Cores Average Lead Level I SQT Level II SQT SeQ Level 1 SQT the trates the second states and the second Level 2 SQT Sample Location St. Louis Bay Area's

#### **BUI Blueprint: Definition of the BUI and Purpose of the Blueprint**

![](_page_49_Figure_1.jpeg)

Monitoring: Tracking Progress using Measureable Indicators

### Remediation

10

Assurance that the base of the food web maximizes diversity and allows for optimum native fish and wildlife populations

Merging restoration objectives within remedial best management alternatives Healthy Estuarine Habitat

### Restoration

Simplified R2R Process

![](_page_50_Picture_6.jpeg)

## Remediation to Restoration Process Template

![](_page_51_Figure_1.jpeg)

**Funding Identified** 

**Delisting Progress** 

![](_page_51_Picture_4.jpeg)

Partner Continuity Throughout Entire Process

![](_page_51_Picture_6.jpeg)

### **Twenty-First & Rice's Point Historical Land Use**

![](_page_52_Figure_1.jpeg)

![](_page_53_Figure_0.jpeg)

Created by: Kody Thurnau, MPCA Remediation Division, 8/2009

![](_page_54_Picture_0.jpeg)

#### **Historic values**

- **River Flats**
- Sheltered Bays
- Abundant Aquatic Vegetation
- Abundant Benthic Invertebrates
- Fish Spawning & Rearing
- Shorebird Nesting & Feeding

#### **Suspected Limiting Factors**

- Contaminated Sediments
- Industrial Substrates
- Excessive Wind Fetch
- Shoreline Hardening

![](_page_54_Picture_13.jpeg)

![](_page_55_Picture_0.jpeg)

### Implementing BUI Removal and AOC Delisting Process St. Louis River Estuary

- 2011-2012: Establish Implementation Framework
  - \* Determine remedial actions achievable within the AOC
  - \* Identify funding mechanisms for implementing partnerships
  - \* Create workplan with connections between restoration and AOC goals

#### • 2012-2020: Prioritization of Remediation and Restoration Projects

- \* Establish restoration pathways and specific projects that will address the beneficial use impairments in the AOC
- \* Define partners, timelines, funding and work plan phasing and implementation
- Seek long term funding commitments federal, state and local

#### • 2012-2020: Restoration of Subwatersheds and River Stretches

- \* Initiate work plans that will accomplish restoration goals within the estuary
- \* Leverage funds to fulfill BUI Removal and AOC Delisting Projects (Remediation/Restoration)

#### • 2012-2025: Monitor and Evaluate Progress/Continued Restoration

- \* Establish monitoring plans for key sites in relation to overall AOC health
- \* Develop a chemical, biological and physical analysis for quantification of delisting the AOC
- \* Evaluate BUI's and submit BUI removal documents
- 2020-2025: Recovery Beneficial Use Impairment Removal Delisting

(Estimated Total Cost: \$300 million - \$1 billion)

![](_page_57_Picture_0.jpeg)

![](_page_58_Picture_0.jpeg)