Stream Project

Decision Analysis and Design Guidance for Stream Restoration

Daniel W. Baker

Johns Hopkins University
National Center for Earth Surface Dynamics
Intermountain Center for River Rehabilitation and Restoration

Questions we'll answer today...

- What is Stream Project?
- How can we frame decisions in a way that is easily understood by project proponents, regulators, and local citizens?
- How can we incorporate the uncertainties of natural stream systems in both design and decision making?
- How does this framework lend itself to adaptive management?

Overview

Project Intent:

- Link stream restoration goals, objectives, and actions in transparent and predictive decision-analysis framework
 - Bring all restoration goals to the table
 - Evaluate uncertainty and risk
 - Incorporate stakeholder preferences and social benefits

Inited States Repartment of griculture

Natural Resources Conservation Service Part 654 National Engineering Handbook

Stream Restoration Design

Issued August 2007

MAKING HARD DECISIONS

An Introduction to

Decision Analysis

Much of what we propose is not new!

(it's a matter of pulling it together!)

Functional Objectives for Stream Restoration

by J. Craig Fischenich¹

September 2006

ERDC TN-EMRRP-EBA-4 July 2010

Metric Development for Environmental Benefits Analysis

by S. Kyle McKay¹, Bruce A. Pruitt², Mark Harberg³, Alan P. Covich⁴, Melissa A. Kenney⁵, and J. Craig Fischenich¹

Why Now?

- Stream restoration is becoming a more 'mature' discipline
- Restoration context and objectives are evolving, but not necessarily more focused
- Expertise of restoration teams is increasing
- Linkages from goals to actions are weak

Basic Framework

Consider Typical Project Objectives

- Project will reduce sediment and nutrient loadings
 By how much? At what cost?
 Is there a cheaper alternative?
- Project will provide in-stream habitat
 Is habitat limiting?
 What are the odds of population recovery?
 What is it worth?
- Project will provide a stable, natural channel
 What is that?
 Is it consistent with other objectives?

Key Element #1: Interdisciplinary Interaction

Key Element #2: Objectives Linked to Actions

- Specific, quantifiable objectives explicitly linked to design choices
 - support tradeoff analysis
 - adaptive management
 - effective learning by doing
- Range of Objectives
 - Infrastructure protection
 - Improve water quality
 - Recover endangered aquatic population
 - Improve aesthetics or recreational opportunities

Key Element #3 Integrated Toolbox

- Quantify watershed sediment, hydrologic, and ecological drivers
- Predict physical, biological, and geochemical response to design manipulations
- Multi-Criteria Decision Analysis for evaluating design alternatives

WITER

Scalable Toolsets

Effort Level	Chair Base Level	Bike Minimal Level	Scooter Moderate Level	SUV Highest Level
Working Time on Project	hours	days	weeks	months-years
Duration of Data Collection	< 1 day	< 1 month	< 1 year	> 1 year
Total Cost	\$0.1K	\$1K	\$10K	\$100K

Scalable Toolsets: Example

Required Information	Chair Base Level	Bike Minimal Level	Scooter Moderate Level	SUV Highest Level
Stream temperature	Model averaged over reach and time	Model averaged over reach, but including time	1-D reach scale model: e.g. HEC-RAS temp model	2-D reach scale temp model OR Basin scale temp model
Sediment Assessment: History and Trends	Gage data, historic air photo analysis	Historic sedimentation rates; section calculations	Reach scale routing analysis	Watershed sediment budget with multiple lines of evidence

Do you have predictive tools you would like to share? Send us your suggestions to info@streamproject.org

Key Element #4 Unifying Case Studies

- Apply framework and tools to diverse restoration projects
- Demonstrate the importance of the watershed context

Minebank Run, Baltimore County, MD

- 1. Introduction
- 2. Objectives driven framework
- 3. Hydrology
- 4. Sediment
- 5. Fluvial geomorphology
- 6. Hydraulics
- 7. Sediment transport
- 8. Channel dynamics
- 9. Water quality
- 10. Energy and productivity
- 11. Physical habitat
- 12. Social value
- 13. Riparian vegetation
- 14. Decision analysis methods

15. Monitoring and adaptive management

Stream
Project:
Chapters

Site Dynamics:

Watershed

Context

Assessment

and Design

Making Decisions

and Learning

Adaptive Management

- Process that promotes flexible decision making that can be adjusted as outcomes become better understood
- A complimentary extension to the Stream Project framework
 - Objective driven design
 - Actions that can be adaptive instead of singular
 - Modular toolset that can be improved over time

What the Stream Project will NOT do for you

- Provide a 'cookbook' approach to stream restoration
- Circumvent engineering analysis and judgment
- Provide <u>all</u> the background you need
- Recommend reach scale restoration if the problem is at the watershed scale
- Eliminate stream restoration failures

What the Stream Project can do for you

- Help set the appropriate objectives given the site / watershed attributes and constraints
- Predicatively and transparently link objectives
 → site attributes → restoration actions
- Provide a range of scalable tools that quantify uncertainty
- Provide a bases for tradeoffs among objectives and across project alternative

The Stream Project Team

Name	Affiliation(s)	Specialties
Peter Wilcock - Director	JHU, NCED, ICRRR	sediment transport, channel dynamics
Daniel Baker - Manager	JHU, NCED, ICRRR	channel design, water quality
Patrick Belmont	USU, NCED, ICRRR	watershed analysis, water quality
Phaedra Budy	USU, ICRRR	fish biology, ecosystem restoration
Jock Conyngham	USACE ERDC Env. Lab	aquatic habitat, fishery restoration
Martin Doyle	U. North Carolina	channel design, restoration strategies
Craig Fischenich	USACE ERDC Env. Lab	environmental assessment, riparian ecology
Richard Fischer	USACE ERDC Env. Lab	riparian ecology
Ben Hobbs	JHU, NCED	environmental economics, decision analysis
Meg Jonas	USACE ERDC Env. Lab	hydraulics and channel design
Gary Parker	UIUC, NCED	sediment transport, channel dynamics
Jack Schmidt	USU, ICRRR	fluvial geomorphology, hydrology
Dave Shepp	USACE Headquarters	water quality, environmental restoration
Barb Utley	USU, NCED, ICRRR	fluvial processes, water quality monitoring
Joe Wheaton	USU, ICRRR	multi-dimensional modeling, instream habitat 18

Questions?

Email us: info@streamproject.org