

#### Overview

- Uses of wood in rivers
- Design considerations
  - Forces at work
  - Countermeasures







#### Uses of wood in rivers

- Floodplain roughness
- Water training
- Refugia during floods
- Protect critical transitions



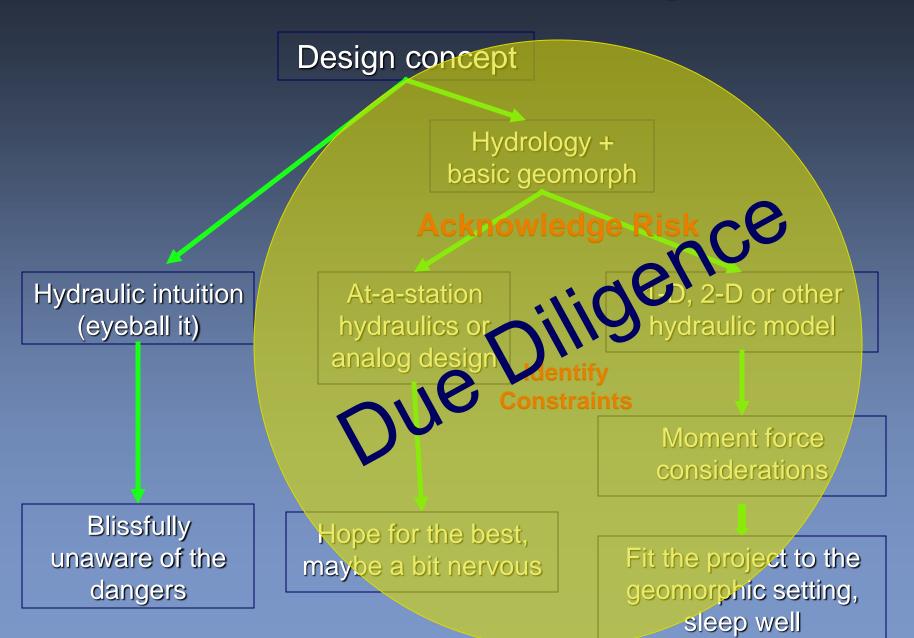
#### Uses of Wood



#### Combination

- Stabilization
- Fish habitat





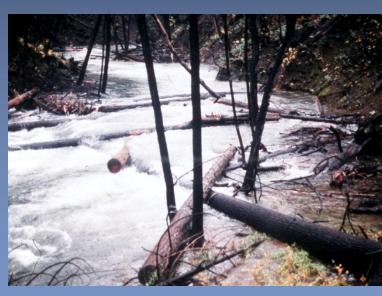

# Risks associated with large wood placement in rivers

- Movement may impact
  - Your habitat improvement goals
  - Your original geomorphic goals
  - Flooding
  - Life and property
    - Recreational boaters
    - Bridges
    - Culverts
    - Houses



### The umbrella of due diligence



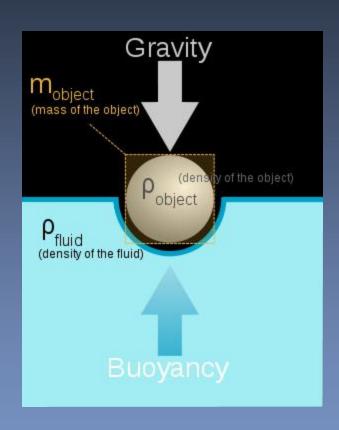

# Design considerations

#### Forces at work

- Drag force
  - Dependent on Area & Velocity
  - High energy channels
  - Larger jams (greater area)
  - Bends








### Drag force

- Drag force
  - $F_d = C_d A \gamma_w (V^2) (0.5) / g$ 
    - C = drag coefficient (0.6-0.9)
    - A = Area of the structure exposed to current
    - V = Expected stream velocity
    - $\gamma_w$  = Density of water
    - g = gravitational acceleration
    - ERDC recommends multiplying by a factor of 4 to account for debris

#### Forces at work

- Buoyant Force
  - Typically the biggest problem for smaller jams in Midwestern streams
  - F<sub>b</sub> = weight of water displaced by the LWD
  - Fb stays the same, but logs change over time (dry, decay)



Any floating object displaces its own weight of fluid.

Archimedes of Syracuse

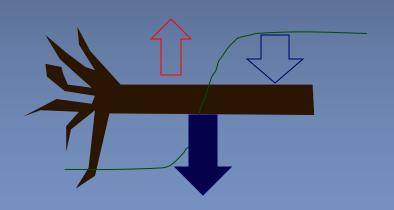
# Buoyancy and drag countermeasures

- Calculating ballast needed (Example 35 ft log x 1ft diameter, with 25 feet exposed):
  - Buoyant force of the wood = 1,225 lb
  - Downward force of the wood itself = 1,715 lb
  - Downward force of the soil on top of the log assumes burying 10 feet of a 35 ft log = 2,850 lb
- If FS of 2.0, additional ballast is not needed:

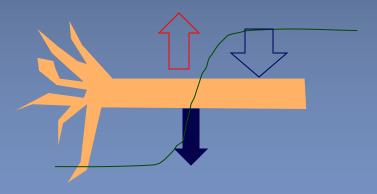
1,715 + 2,850 = 4,565 lb > 2 x 1,225 lb

### Drag force




- Compare the buoyant force to the Drag force in this case:
  - 25 foot long exposed log, 1 ft dbh = 310 lb
  - The buoyant force of 1,225 is far in excess of the drag force – so design for the larger

#### Other considerations


- Remember that drag and buoyant forces don't need to exceed the countermeasures to dismantle your project
  - Vibration
  - Pumping of soils
  - Soil loss or lubrication reduces friction
  - Soil loss decreases your ballast
  - Sliding of loose pieces
  - Jenga

#### Other forces at work

- Drying
  - Dry wood weighs less, and so the downward force component of the wood decreases as it dries



$$F_B < F_{log} + F_{soil}$$



$$F_B > F_{log} + F_{soil}$$

# Countermeasure options

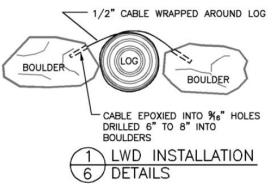




#### Bank stabilization

- Embedment length
- Buoyancy calculations
- May need other measures to prevent soil loss and thus loss of ballast




- Post Anchor/pile ballast
  - When trees are scarce
  - As trapping element
  - Ballast
  - Flexible wood mat anchor





#### Rock ballast

- Embed within jams
- Cable directly to logs
- Aesthetic issues





# Fitting the wood to the geomorphic setting



- How is wood functioning in the system now?
- Mobility is related to length
- Mobility related to channel morphology

## Wood properties



- How long will your wood last
- Density ≠ decay resistance
- Resistant woods
  - Lignin content
  - Resin content
  - Cedar, Douglas fir, white pine, oak, other pines

|                     | Density  |
|---------------------|----------|
| Tree Species        | (lb/ft³) |
| Cedar, red          | 23       |
| Cottonwood          | 25       |
| Aspen               | 26       |
| Poplar              | 27       |
| Pine, white         | 28       |
| Redwood, American   | 28       |
| Willow              | 29       |
| Spruce              | 30       |
| Alder               | 32       |
| Ash, black          | 33       |
| Douglas Fir         | 33       |
| Elm, American       | 35       |
| Walnut, Amer Black  | 38       |
| Locust              | 43       |
| Maple               | 43       |
| Oak, American Red   | 45       |
| Oak, American White | 47       |
| Cherry              | 50       |

#### WOOD PROPERTIES

- Preferred Trees
  - Cedar
  - White pine
  - Oak
  - Maple
  - Elm
  - Black willow (special)
  - Cottonwood (special)
  - Red pine (submerged)

- Secondary Trees
  - Aspen/Poplar
  - Balsam fir
  - Hemlock (brittle)
  - Basswood
  - Black willow (brittle)
  - Cottonwood



#### Take home message

- Treat each situation individually
- Properly assess risk
- Conduct the appropriate amount of due diligence
- Match the wood to the geomorphic setting
- Be safe

## Thank you

mmelchior@interfluve.com 608-354-8260