Floodplain restoration as a nutrient management strategy in the agricultural Midwest

Artificial drainage in the agricultural Midwest

Dahl 1990

Photo credit: Natalie Griffiths

Can we restore ecosystem services by adding floodplains?

Two-stage ditch floodplains

Each floodplain is 1-2.5 x the width of the main channel

Main channel left intact

During high flows: \downarrow water velocity, \downarrow shear stress = greater stability (Powell et al. 2007)

Potential ecosystem services

Denitrification: permanent N removal

Particle settling: retain sediment and TP

Potential ecosystem services

Assimilatory uptake: temporary removal of N Mechanism: ↓ turbidity = ↑ photosynthesis

Particle settling: retain sediment and TP

Excess N an important resource concern

producers Iowa's Largest City Sues Over Farm Fertilizer Runoff In Rivers JANUARY 12, 2015 3:26 AM ET DAN CHARLES Listen to the Story Morning Edition SHARE Comment

LUMCON 2011

Study Sites

Most extensive study on Shatto

- > 70 % row-crop agriculture
- History of conventional ditch maintenance
- Abundant nutrients

Shatto Ditch - January 2008 flood (2 months post-construction)

Seasonal patterns at Shatto

No effect on in-stream rate; seasonal variation $(temp, [NO_3^-])$

During inundation, N removal 0-12 times higher with floodplains (mean=3x higher)

Floodplain restoration date

Controls on floodplain denitrification - vegetation

Vegetation facilitates denitrification response to floodplain inundation.

Controls on floodplain denitrification - inundation time

Within an event:

 \uparrow inundation time = \uparrow denitrification rate

Floodplain height should be low enough to allow regular inundation

Assimilatory N Uptake During Storms

Approach:

Convert photosynthesis and respiration measurements to N uptake autotrophic (algae) heterotrophic (bacteria)

Results: autotrophic N uptake 个; heterotrophic N uptake unchanged

Total assimilatory N uptake (autotrophic + heterotrophic) unchanged

Design considerations

1. Floodplain height – low enough for multiple inundation events per year

2. Encourage growth of vegetation

3. Combine with other practices to achieve greatest N removal benefit

Resources for two-stage ditch design

http://agditches.osu.edu/Publications

Summary

- Floodplains increase N removal via denitrification
- Denitrification optimized with:
 - Soil OM
 - Length of floodplain inundation
 - Presence of established vegetation
- Turbidity and [SRP] reduced by floodplain restoration; [NO₃⁻] sometimes reduced
- Two-stage ditch cost-effective

Acknowledgements

- Field and Analysis: Jon Witter, Andy Ward, Jessica D'Ambrosio, John Tyndall, Molly Lipscomb, Mia Stephen, Kent Wamsley, Chad Watts, Jake Beaulieu, Laura Taylor Johnson, Caroline Turner, Maureen Williams
- Funding: Iowa Rivers Revival, The Nature Conservancy (TNC), Indiana Department of Environmental Management (IDEM), USDA

