Prioritization of strategies to reduce channel-derived sediment in the Minnesota River Basin

Christian F. Lenhart¹, John Nieber¹, David Smith², Linse Lahti³, and Ann Lewandowski³

¹Bioproducts & Biosystems Engineering ²Applied Economics, ³Water Resources Science program

The Problem

Minnesota River basin carries largest load of sediment & nutrients to Mississippi R

- Majority of sediment exported from basin is channel /near channel sources (about 2/3)
- Streamflow increases
- But how can we practically reduce channel erosion?
 - Watershed vs. in-stream
- Where to prioritize
 - by load, sediment delivery rate
- Cost issues

MN River near its mouth

McKnight Foundation Study on MN River Basin

Project Components

- Synthesis of existing data (MPCA RBS study, Corn Growers Lower MN River Study)
- Cost-benefit data
- Landowner meetings
- Case studies
- Identification of costeffective riparian BMPs

Sediment loading – bluffs and deposition

Bluff loading

Minnesota River Basin TSS FWMC (Cumulative 2002-2006 TSS FWMC) Pomme de River Pomme de River Velov Medighe River River River Cottonwood River River Cottonwood River Minnesota River Minnesota River Minnesota River River

Sediment deposited in lower MN valley

MPCA-Scott Matteson

Legend Minnesota River **Tributaries** Minnesota River Basin Subwatershed Borders

Elm Creek (glacial till plain)

Sediment sources by region

Minnesota main channel

Where to start? Pros and cons of watershed vs. channel actions:

Watershed

- +Addresses causes
- +Ag. sustainability
- -Hydrologic storage difficult to find
- -Lag time

Channels

- +High sed. delivery ratio
- +Reduce loss of farmland
- +Ecological restoration potential
- +Aesthetics/recreation
- -Expensive
- -May only address symptoms

Watershed management issues

- 85% row crops
- High crop prices & land values
- Few storage opps in uplands

LANDCOVER	ACRES	PERCENT
Com	934,781.23	45.63%
Soybean	783,218.02	38.23%
Spring Wheat	672.63	0.03%
Winter Wheat	22.47	0.00%
Rye	72.84	0.00%
Oats	184.43	0.01%
Alfalfa	5,562.39	0.27%
Beets	304.54	0.01%
Potatoes	18.60	0.00%
Peas	3,607.26	0.18%
Grassland	41,056.94	2.00%
Woodland	57,978.92	2.83%
Shrubland	6.20	0.00%
Baren	264.25	0.01%
Developed	152,958.85	7.47%
Water	35,805.29	1.75%
Wetland	32,153.86	1.57%
Total	2.048.668.75	100.00%

Figure 5.28: 2006 Land Use Statistics for the Blue Earth River; LeSueur R to Minnesota R.

Time lag for WQ response in large watersheds

- MN River basin may take decades
- Other large muddy,
 Midwestern Rivers –
 Illinois and Maumee,
 Ohio
- Smaller basins respond more quickly

Assessing the Health of Streams in Agricultural Landscapes:

The Impacts of Land Management Change on Water Quality

MPCA prioritization – fields first, then targeted channel sites

Other strategies

Riparian corridors and "marginal lands" in Blue Earth Basin

Environmental Benefit Index- BWSR (Mulla)

Lansing Shepard and Paula Westmoreland This Perennial Land

"Water quality risk" on Mn river

Alternative MN River strategy

Short term

- Focus on riparian corridor where implementation is possible
- Focus on smaller
 watersheds where WQ
 improvements can be
 seen (esp. sentinel
 watersheds)

Long-term

- MN Basin hydrologic change requires policy shift
 - Change Farm Bill
 - Change economic incentives

Prioritization strategy

Strategy

- Identify largest sources of channel sediment and Location of sediment sources,
- 2. Characterize types of sediment (particle size, structure, etc) and delivery ratio
- 3. Identify major sediment impacts on in-stream biota
- 4. Weight priorities: biota, sediment, infrastructure, etc. for management
- 5. Characterize restorability based on logistical, social, economic and technical criteria (Norton et al.)

Issues

Net vs. local sediment impacts IBI vs. turbidity TMDLs

Restorability issues: Cost /benefit of channel stabilization

Cost Data

57 projects (34 projects full data)

- \$125/linear foot
- \$10,000 fixed cost
- Median project cost \$25,000 (Avg. \$76,000)
- Some Twin Cities projects >\$1 million
- Cost-prohibitive for large-scale use

Locations

Examples from BWSR Fact Sheets

Fact sheet benefits

Estimated 5.5 tons/year sediment reduction
Removal of invasives
Correction of broken stormwater outlet

Yelllow Medicine, Lyon County. \$73,000; 2400 ft.

Blue Earth County Bluffs

Part of "Hazard Mitigation Plan"

Potential Stream Channel Stabilization Design Projects

Improving the cost/benefit ratio

What brings costs down? What drives costs up?

- Use of local materials
- Wood over rock
- **Proximity to roads for** access
- Leveraging \$\$\$
- Planning ahead

- Urban, infrastructure
- Rock (rip rap and vanes)
- Relocating channel
- Consulting fees or lack of local training
- Historic structures

Use of low-cost, local wood instead of rock

Needed for LB:

Wood in place of rock

Stream Section 3: Elm Creek Stream Restoration Demonstration Site RESTORATION STRUCTURES OTHER: -60 feet between each vane -Each vane should be aligned 30°, pointing upstream -Vanes should never be emplaced -Bankfull at 72 feet cross-section Construction Plans/Key: -Cut, place, and stake logs with cable +\$1,100/vane -Stabliize with thick fabric (expe +\$80/yane B., C., D.) Backhoe Work: -Backhoe cutback -Fill bench -Reshape point bar -\$145/hour -Total: approx. \$1,160 E., F.) Root Wads -Cut and place -\$500/root wad -Total: \$1000 G.) Bank Stabilizing Fabric

-Left bank, stabilize bench -Straw fabric (inexpensive straw matting)

Approx. TOTAL for Sec. 3: \$9,240

Wood harvested on-site

Cost benefit research – need for quantification of ecological services

- Reduced farmland loss
- Sediment, nutrient loss reduction (TMDLs)
- Aesthetics
- Recreation/access to river on reduced slopes

Restorability issues: landowner perspectives

Questions

- Landowners' definition of problem
- Criteria for solutions
- A list of the most acceptable solutions
- A matrix evaluating the solutions
- Individual answers to questionnaire.

General strategies by by region

Geomorphic region

- Western till plains / prairie potholes
- Bluff country LeSueur and Blue Earth

Lower Minnesota River

Actions

- Wetlands, flow reduction; Streambanks
- Targeted bluffs, > x tons/year and/or threatening roads, etc.
- Targeted streambanks,
 y tons/year and/or
 threatening roads, etc.

General strategies/policies

Bluffs

Manage the valley, not just streams

Plan ahead; don't wait for disaster ——— Brown County example

Streambanks

Plan ahead

Lower Minnesota:

Divert before reaching valley wall

>1 to 5,000 tons/yr (depending)

Restore sinuosity

Veg management

Specific BMPs—drainage treatment

Controlled drainage & reduced tile density

Treatment wetlands

Water storage: wetlands for water storage, nutrient removal & waterfowl habitat

- Hydrologic storage
- Flood peak reduction
- Excellent N removal
- Some P removal
- Waterfowl habitat

Conclusions and Future Work

Largest sediment sources ≠ most "restorable"

- Long term
 try to
 reduce flow with land use policy change
- Short-term small watershed goals; targeted channels/ bluffs

Remaining needs / questions

- Assessment of benefits of stream projects
- IBI benefits
- Sediment delivery rate?
- Need to quantify eco benefits better
- Farm economics may change in future