Stream Restoration at Road Crossings in Northern Wisconsin

Dale Higgins, USDA Forest Service

Key Points Stream Restoration at Road Crossings in N WI

 Large # of road and trail stream crossings on the landscape

- Many crossings adversely impact streams
- Proper replacement of crossings can restore streams

of Crossings: Chequamegon-Nicolet NF Stream Restoration at Road Crossings in N WI

Number of Crossings: WI Stream Restoration at Road Crossings in N WI

Road Type	Est # of Crossings
Interstate Hwy	1.3% - 817
US Hwy	3.2% - 1,982
State Hwy	8.6% - 5,381
County Hwy	20.6% - 12,776
Secondary Roads	66.2% - 41,055
Total	61,971

WDNR GIS Analysis by Miller, 2008

Stream Crossing Impacts <u>Stream Res</u>toration at Road Crossings in N WI

- Restrict aquatic organism passage
- Degrade water quality (sediment, water temperature)
- Alter channel morphology (aggradation and scour)

Restoration at Stream Crossings Stream Restoration at Road Crossings in N WI

- Site assessment especially stream profile survey
- Stream simulation: high and low gradient
- In-stream restoration (where needed)

Low Gradient (<0.5%): BFW-TWC

Stream Restoration at Road Crossings in N WI

- Bankfull width (BFW) tailwater control (TWC).
- Tailwater provides sufficient depth and velocity to allow AOP
- Sized to match BFW and pass the 100-yr flood (Q₁₀₀) with a headwater to depth ratio (HW/D) <1 (i.e., below top of culvert)
- Invert elevations are based on analysis of the stream profile
- Invert elevation restores or maintains channel morphology and the natural transport of sediment and organic matter
- Generally no material is placed in the culvert, with exceptions

Low Gradient: Inlet Set High Stream Restoration at Road Crossings in N WI

- Many low gradient streams have slopes of just 0.1-0.2%
- Culverts set just 1.0 ft high can cause water to pond several hundred feet upstream
- Channel aggrades with sand and muck

Low Gradient: Inlet Set High Upstream Ponding and Aggradation Stream Restoration at Road Crossings in N WI

- Culvert replacement can expose gravel buried upstream
- Consider the affect of the tailwater control on upstream aggradation
- Tailwater control may degrade over time or may need to be lowered

Low Gradient Example: Riley Cr at Forest Road 2161 Stream Restoration at Road Crossings in N WI

• Bankfull Width (BFW)

- Min = 7.0 feet
- Mean = 9.2 feet
- Range = 7.0-11.5 feet, n=6
- Drainage Area = 2.25 sq mi
- **BFW** (**E-Reg Eq**) = **8.2** ft

Low Gradient: BFW Culvert Passes Q₁₀₀ With HW/D<1 Stream Restoration at Road Crossings in N WI

In N WI watersheds with low flood flows, BFW culverts typically pass the 100-yr discharge with a minor head increase and headwater below the top of culvert.

Low Gradient: Undersized Culvert Set Too High Water Temp & other Impacts **Stream Restoration at Road Crossings in N WI**

Low Gradient: Undersized Culvert Set Too High Water Temp & other Impacts Stream Restoration at Road Crossings

Low Gradient: Undersized Culvert Set Too High Water Temp & other Impacts **Stream Restoration at Road Crossings**

Low Gradient: Structure Considerations Stream Restoration at Road Crossings in N WI

- May be needed in sand bed streams with low flows
- Without structure to create banks or a thalweg, sand spreads out to create a flat, uniform bed
- Shallow water may impede passage of some sp.

Example of an open-bottom arch from a Michigan.

Low Gradient: BFW-TWC

Rock bars for thalweg development: NB Oconto Trib at Hwy 64

Stream Restoration at Road Crossings in NWI

- Culvert width = 8.0 ft
- BFW = 8 ft (ave)
- Culvert width/BFW = 100%
- Culvert length = 135 ft
- CL/BFW = 16.9

- 1 wavelength = 8'x10=80 ft
- 5 bars/wavelength
- Bar spacing=80/5=16 ft
- Total bars=135'/16=8 bars
- Bar spacing adjusted slightly to fit culvert

	We Co 8	st wort	- box
4	D	14	1
19		>	
38 8 structures	Þ	C	
57			134'
76	þ	C	
95		>	
114	D	C	
139			*

Low Gradient: BFW-TWC Rock bars for thalweg development: NB Oconto Trib at Hwy 64 Stream Restoration at Road Crossings in N WI

High Gradient (>1%): Stream Simulation

Stream Restoration at Road Crossings in N WI

- For streams too steep to provide TW control and mobile gravel-cobble beds
- Stream channel constructed through structure
- Provides passage of aquatic organisms, bedload and wood
- Design based on a reference reach
- Structure wider than BFW to allow for stream banks
- Height of structure allows for adjustable bed and passes Q₁₀₀ with HW/D<0.8

Stream Simulation Example: Duck Cr at Hwy 139

Stream Restoration at Road Crossings in N WI

Reference Reach: Duck Cr at Hwy 139 Stream Restoration at Road Crossings in N WI

Mean Bankfull Width = 7.2 ft Range of BFWs = 5.7-9.9 ft Key pieces 18-24 inches

Gradient = 3.4% D50 = 105 mm (small cobble) Range from sand to boulders

Designing for Aquatic Organism Passage at Road-Stream Crossings

particle size interval name	size interval (mm)	count or frequency	percent frequency	cumulative percent finer	Project Name	Duck Cr @ Hwy 139
v large boulders	2048 to 4096	0	0.00	100.00	Sample ID.	Reference Reach
large boulders	1024 to 2048	0	0.00	100.00	Sample Date:	11/16/2007
medium boulders	512 to 1024	0	0.00	100.00	Sampler Name:	Higgins and Mineau
small boulders	384 to 512	5	5.10	94.90	Sample Locaton:	118 ft Below Upper Xing
	256 to 384	13	13.27	81.63	Sample Method	transect method, perpendicular to
large cobbles	192 to 256	13	13.27	68.37	() () () () () () () () () ()	flow, bankfull.
	128 to 192	15	15,31	53.06		
small cobbles	96 to 128	8	8.16	44.90		
Card over 1	64 to 96	6	6.12	38.78		
very coarse gravel	48 to 64	2	2.04	36.73	percentile	particle size (mm)
	32 to 48	9	9.18	27.55	d95	400
coarse gravel	24 to 32	3	3.06	24.49	d84	270
	16 to 24	5	5.10	19.39	d50	120
medium gravel	12 to 16	4	4.08	15.31	d16	13
	8 to 12	б	6.12	9.18	d5	5
fine gravel	6 to 8	3	3.06	6.12		
	4 to 6	3	3.06	3.06	% boulders	18.37
very fine gravel	2 tó 4	Ø	0.00	3.06	% cobbles	42.86
sand, silt, or clay	< 2	3	3.06	0.00	% gravels	35.71
-	Total count	98	100.00		% sands, silts, clays	3.06

Channel Materials: Duck Cr at Hwy 139 Stream Restoration at Road Crossings in NWI

Streambed Mix for Duck Cr Culverts at Highway 139

Size	%	% by	Size	Volume Needed (cu yds)		
(inches)	Passing	Volume	Range	Lower Xing	Upper Xing	Both
20	100	15	12-20"	15	11	25
12	87	15	8-12"	15	11	25
8	70	25	4-8"	25	18	42
4	45	10	2-4"	10	7	17
2	37	15	3/4-2"	15	11	25
<3/4	22	20	sand-3/4"	20	14	34
Total		100		100	70	170

Note: volume assumes 0.7 cu yd/ft of culvert length

Note: also need 410 rocks 18-24", 320 for banks and 90 for bands

Design Profile: Duck Cr at Hwy 139 Stream Restoration at Road Crossings in N WI

Stream Simulation Reference Stream Restoration at Road Crossings in N WI

Stream Simulation: An Ecological Approach to Providing Passage for Aquatic Organisms at Road-Stream Crossings

USDA Forest Service National Technology and Development Program, 7700—Transportation Management, 0877 1801— SDTDC, May 2008

In-Stream Restoration at Crossings Stream Restoration at Road Crossings in N WI

High tailwater control, braiding

Aggradation from failures

Cutoff meander

High TW Control and Braiding

Stream Restoration at Road Crossings in N WI

High TW Control and Braiding Stream Restoration at Road Crossings in N WI

Distance (ft)

Aggradation from Frequent Failures Stream Restoration at Road Crossings in N WI

Aggradation from Frequent Failures Stream Restoration at Road Crossings in N WI

Downstream road sediment removal to restore stream profile and dimensions.

Restore Cutoff Meander: Armstrong Cr Stream Restoration at Road Crossings in N WI

