Bluff Erosion in the LeSueur River Basin

Stephanie S Day

Karen Gran Patrick Belmont Tim Wawrzyniec

UNIVERSITY OF ILLINOIS

FLORIDA INTERNATIONAL UNIVERSITY

UNIVERSITY OF MINNESOTA DULUTH

Aerial Photographs

Sources of Uncertainty

Georeferencing the aerial photographs
Selecting the bluff crest

Not quantified yet

Assumptions made about how buffs erode

Georeferencing

- Arc GIS was used to georeference photos
 First order polynomial (affine) transformation used to reduce warp
- Eight or more stable poin georeference aerial photo
 RMS error calculated by georeferencing error

ArcGIS help (spatial analyst: warp)

RMS error

1st order polynomial

Assumptions on bluff erosion

- Erosion at the base of the bluff causes failures near the crest of the bluff
- Material that slumps down and forms a toe is removed quickly by the river
- Minimum estimate of bluff erosion assumes a wedge of material being removed where greatest amount of sediment is removed near the crest of the bluff

Assumptions on bluff erosion

Average erosion 1938-2005: 0.15 m/yr ± 0.06 1971-2005: 0.14 m/yr ± 0.04

Histogram of bluff retreat rate

Total Volume lost assuming top wedge only 1938-2005: 25000 m³/yr 1971-2005: 23000 m³/yr

Bluffs with less than 1000 m^3 volume loss

Volume lost assuming top and bottom wedge

Volume lost for top and bottom wedge 1938-2005: 28000 m³/yr

Ground Based LiDAR

http://www.optech.ca/prodilris.htm

Software – PolyWorks Suite

Home

Company Solutions How to buy Partners Technical support Media center Contact us IMView free viewer

Login

Go to Surveying Site

Technical Support Zone

Forgot your password?

PolyWorks® The Universal 3D Metrology Software Platform that smoothly integrates with 3D Scanners, white light 3D digitizers, hard probes, manual CMMs, and laser trackers for 3D metrology, 3D inspection, and reverse engineering.

Password

03-18-2010 German PolyWorks Us...

11-19-2009 PolyWorks® V11.0.11 Sets New Standard in Hybrid Metrology Capabilities

PolyWorks/IMView™ viewer for PolyWorks inspection projects and polygonal models

@ 2010 InnovMetric Software Inc. All rights reserved.

Sources of Uncertainty

Error associated with scanner
Bluff alignment – done using PolyWorks
Vegetation and other erroneous points
Direction of change

LiDAR and Vegetation

After Vegetation is removed

Bluff Alignment

This is an example of bad alignment.

- The colors indicate the magnitude of change between two scans

Direction of Change

Result of looking at change in only one direction where bluff is curved

When using multiple vectors normal to the average surface, a more accurate estimation of the retreat is found

Average erosion rate 0.10 m/yr Average volume lost 50 m³/yr

Review

- Aerial Photographs:
 - 80 bluffs measured
 - Bluff change from 1938-2005 (67 years)
 - <u>Retreat Rate: 0.15 ± 0.06 m/yr</u>
- LiDAR:
 - 40 comparisons made on 13 bluffs
 - Amount of bluff change in 100 to 650 days
 - Retreat Rate 0.10±....m/yr

Aerial Photographs

- Inexpensive many aerial photos are available online
- Only shows changes of bluff crest and river migration
- Low resolution (m)
- Covers longer time period

Ground Based LiDAR

- Equipment costs >\$100,000 to own; to rent is about \$8000
- Shows changes on the bluff face and may give details about erosion processes
- High resolution (mm-cm)
- Can be used to track annual changes

